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Abstract Approximate analytical bound state solutions of the radial Schrödinger
equation are studied for a two-term diatomic molecular potential in terms of the hyper-
geometric functions for the cases where q ≥ 1 and q = 0. The energy eigenvalues
and the corresponding normalized wave functions of the Manning–Rosen potential,
the ‘standard’ Hulthén potential and the generalized Morse potential are briefly stud-
ied as special cases. It is observed that our analytical results are the same with the ones
obtained before.
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1 Introduction

In this letter, we study the bound state solutions of a diatomic molecular potential
having the form

V (r, β, q) = −V0
e−βr

1 − qe−βr
+ V1

e−2βr

(1 − qe−βr )2 , (1)

which has been firstly presented by Sun to fit some experimental data of some diatomic
molecular systems [1]. Analytical studying of the above potential could be interesting
since it involves several potential forms (for example, q = 0 gives the Morse potential,
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q > 0 corresponds to the ‘generalized’ Hulthén potential, etc.) meaning that we can
simply extend the solutions to the ones of these special cases.

The above potential is one of the central potentials which are a powerful ground
for experimental and theoretical computations in different areas of physics such as
in high energy physics where they were used to describe hadrons as bound states
[2] in atomic physics where some important subjects such as binding energy and
inclusive momentum distributions are studied by using of central potentials [3], in
theoretical molecular dynamics model to study the intramolecular and intermolecular
interactions and atomic pair correlation functions [4]. Moreover, the central potentials
have been used in an important quantum mechanical problem which is also related
with quantum information theory, the Fisher uncertainty relation and applied to the
hydrogen atom and isotropic harmonic oscillator [5] and also for some theoretical
calculations within the information theory to study some statistical quantities such as
the Boltzmann-Shannon entropy [6]. The construction of an algorithm could be an
interesting problem where the aim is to solve the radial Schrödinger equation (SE) for
a given central potential V (r) numerically [7].

To our knowledge, the potential under consideration has been studied within the
supersymmetric quantum mechanics [8] and in terms of Green’s function [9] in non-
relativistic domain. We search the bound state spectrum and the wave functions of
the above potential by using an approximation instead of the centrifugal term in the
same domain. We find an analytical expression for the energy spectrum and obtain
the normalization constant by using some properties of the hypergeometric functions.
Throughout this work, we restrict ourself to the cases where q ≥ 1 and q = 0 and
give our numerical results for two diatomic molecules for different values of quantum
number pair (n, �).

2 Energy spectrum and wave functions

The radial Schrödinger equation is written [10]

d2 R(r)

dr2 +
{

2m

h̄2 [En� − V (r)] − �(� + 1)

r2

}
R(r) = 0, (2)

where � is the angular momentum quantum number, m is the particle mass, V (r) is the
central potential and En� is the non-relativistic energy. Inserting Eq. (1) into Eq. (2)
gives

d2 R(r)

dr2 +
{
−2mV1

h̄2
1

(eβr − q)2 + 2mV0

h̄2
1

eβr − q
+ 2m En�

h̄2 − �(� + 1)

r2

}
R(r) = 0.

(3)

where V0, V1, β and q are real parameters defined by V1 = D0(eμ − q), V0 =
2V1, β = μ/r0, where D0 is the depth of the potential, r0 is the equilibrium of the
molecule and q is the shape parameter.
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We use the following approximation [11] instead of the centrifugal term among the
others [12–15] to obtain an analytical solution of Eq. (3)

1

r2 ≈ β2 eβr

(eβr − q)2 , (4)

Defining a new variable z = qe−βr and taking a trial function as R(z) = z A1(1 −
z)A2φ(z) and with the help of Eq. (4), Eq. (3) turns into

z(1 − z)
d2φ(z)

dz2 + [1 + 2A1 − (1 + 2A1 + 2A2)z]
dφ(z)

dz

+
{
−2A1 A2 − A2

2 + 2mV1

β2h̄2 + 2mV0

qβ2h̄2

}
φ(z) = 0, (5)

where we set the parameters

A2
1 = −2m En�

h̄2 , (6a)

A2(A2 − 1) = 1

q
�(� + 1) + 2mV1

β2h̄2 . (6b)

By using the abbreviations

c = 1 + 2A1, (7a)

b = A1 + A2 +
√

A2
1 + 2m

β2h̄2

(
V1 + V0

q

)
, (7b)

a = A1 + A2 −
√

A2
1 + 2m

β2h̄2

(
V1 + V0

q

)
, (7c)

Equation (5) becomes an equation having the form of the hypergeometric-type equa-
tion [16]

z(1 − z)φ′′(z) + [c − (a + b + 1)z]φ′(z) − abφ(z) = 0, (8)

whose solution is the hypergeometric functions

φ(z) ∼ 2 F1(a, b; c; z). (9)

When either a or b equals to a negative integer −n, the hypergeometric function φ(z)
can be reduced to a finite solution. This gives us a polynomial of degree n in Eq. (9)
and the following quantum condition

A1 + A2 −
√

A2
1 + 2m

β2h̄2

(
V1 + V0

q

)
= −n, (10)
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Table 1 Energy eigenvalues of the H2 molecule in eV (En� < 0)

n � q = 1.25 q = 1.50 q = 1.75

0 0 3.8099200 2.3409000 1.5021100

1 0 2.6465800 1.4911800 0.8623870

1 2.6295900 1.4804000 0.8551840

2 0 1.7526700 0.8721010 0.4265830

1 1.7394900 0.8642480 0.4217640

2 1.7133000 0.8486670 0.4122170

3 0 1.0823900 0.4428370 0.1570130

1 1.0724800 0.4374880 0.1542230

2 1.0528200 0.4269000 0.1487240

3 1.0237200 0.4112900 0.1406770

4 0 0.5991580 0.1711030 0.0242272

1 0.5920830 0.1679170 0.0231832

2 0.5780760 0.1616440 0.0211659

3 0.5574210 0.1524740 0.0183168

4 0.5305400 0.1406920 0.0148458

5 0 0.2734990 0.0311495 0.0049878

1 0.2689040 0.0298494 0.0054591

2 0.2598410 0.0273349 0.0064646

3 0.2465630 0.0237765 0.0081293

4 0.2294460 0.0194276 0.0106393

5 0.2089850 0.0146225 0.0142399

which gives the energy values of the two-term potential for any �-values

En� = −β2h̄2

2m

⎧⎨
⎩

n2 + (2n + 1)
(

A′
2 + 1

2

) + 1
q

[
�(� + 1) − 2mV0

β2h̄2

]
2n + 1 + 2A′

2

⎫⎬
⎭

2

, (11)

where

A′
2 =

√
1

4
+ �(� + 1)

q
+ 2mV1

β2h̄2 . (12)

By using Eq. (10) we obtain the total wave functions

R(z) = N z A1(1 − z)A2
2 F1(−n, n + 2A1 + 2A2; 1 + 2A1; z). (13)

where N is the normalization constant and will be derived in Appendix A.
We summarize our numerical results in Tables 1 and 2 where the computations

are made for two diatomic molecules, namely H2 and Li H . The values of potential
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Table 2 Energy eigenvalues of the Li H molecule in eV (En� < 0)

n � q = 1.25 q = 1.50 q = 1.75

0 0 3.5677900 2.3156300 1.5836900

1 0 3.0290300 1.9055500 1.2595300

1 3.0250700 1.9029400 1.2577000

2 0 2.5506900 1.5476900 0.9820380

1 2.5471400 1.5453900 0.9804600

2 2.5400700 1.5408100 0.9773080

3 0 2.1274300 1.2372900 0.7468470

1 2.1242700 1.2352900 0.7455040

2 2.1179600 1.2312900 0.7428200

3 2.1085100 1.2253000 0.7388050

4 0 1.7544800 0.9701380 0.5500770

1 1.7516800 0.9684030 0.5489500

2 1.7460700 0.9649380 0.5466990

3 1.7376900 0.9597550 0.5433330

4 1.7265600 0.9528690 0.5388640

5 0 1.4275700 0.7424420 0.3882750

1 1.4251000 0.7409570 0.3873480

2 1.4201500 0.7379920 0.3854990

3 1.4127600 0.7335570 0.3827350

4 1.4029300 0.7276680 0.3790660

5 1.3907100 0.7203470 0.3745090

parameters we used for these molecules are as follows [13]: D0 = 4.744600 eV,
r0 = 0.741600 Å, m = 0.503910 amu, μ = 1.440558 and E0 = h̄2/(mr2

0 ) =
1.508343932 × 10−2 eV for H2 molecule and D0 = 2.515287 eV, r0 = 1.595600 Å,
m = 0.8801221 amu, μ = 1.7998368 and E0 = 1.865528199 × 10−3 eV for Li H
molecule [17]. It is seen that the energy values decrease while the values of the quan-
tum numbers increase and the energy eigenvalues are also inversely proportional with
the shape parameter for each of the molecules.

Now we intend briefly to study some special cases whose energy eigenvalue equa-
tion obtained from Eq. (11) by suitable choices of the potential parameters.

2.1 Manning–Rosen potential

The Manning–Rosen potential can be written as [18]

V (r) = − Ah̄2

2mb2

1

er/b − 1
+ α(α − 1)h̄2

2mb2

1

(er/b − 1)2 , (14)
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Table 3 Energy eigenvalues obtained from Eqs. (15), (18) and (30)

Manning–Rosen potential

n � 1/b Present work Ref. [19]

2 1 0.025 −0.1205793 −0.1205279

0.050 −0.1084228 −0.1082170

0.075 −0.0969120 −0.0964490

0.100 −0.0860470 −0.0852240

Hulthén potential

n � δ Present work Ref. [21]

0 1 0.025 −0.1128130 −0.1127600

0.050 −0.1012500 −0.1010420

0.075 −0.0903120 −0.0898450

0.100 −0.0800000 −0.0791700

0.150 −0.0612500 −0.0594950

Morse potential

n Present work Ref. [17]

0 −4.476013 −4.476013

1 −3.962315 −3.962315

2 −3.479919 −3.479918

3 −3.028824 −3.028823

4 −2.609030 −2.609029

5 −2.220537 −2.220536

If we write our parameters as V0 = A
2b2 ; V1 = α(α−1)

2b2 ; β = 1
b and q = 1 then we

obtain the energy eigenvalues of the Manning–Rosen potential

En� = − 1

2b2

⎧⎪⎪⎨
⎪⎪⎩

n2 + (2n + 1)

(
1
2 +

√
1
4 + �(� + 1) + α(α − 1)

)
+ �(� + 1) − A

2n + 1 + 2
√

1
4 + �(� + 1) + α(α − 1)

⎫⎪⎪⎬
⎪⎪⎭

2

. (15)

which is the same result obtained in Ref. [19]. The normalization constant in Eq. (13)
is obtained from Eq. (A8) as

N =
{

1

g(A(1)
1 , A(1)

2 , k)g(A(1)
1 , A(1)

2 , l) 2 F1(−2A(1)
2 , 1 + 2A(1)

1 + k + l; 2 + 2A(1)
2 + k + l; 1)

}1/2

.

(16)

where A(1)
1 =

√
−2m En�b2/h̄2 and A(1)

2 =(1/2)(1+
√

1+4�(� + 1)+4mα(α − 1)/h̄2 ).
We summarize our numerical results obtained from Eq. (15)in Table 3 where we

set the parameters as A = 2b and α = 0.75 to compare the results with the ones given
in Ref. [19]. Please note that the parameter D0 used in Ref. [19] is zero in the present
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work since our approximation used for the centrifugal term is different from the one
used in Ref. [19] where energy eigenvalues are computed in atomic units.

2.2 Standard Hulthén potential

Equation (1) gives the standard Hulthén potential for V1 = 0 and q = 1

V (r) = −V0
e−βr

1 − e−βr
, (17)

and we obtain the energy eigenvalues from Eq. (11)

En� = −β2h̄2

2m

⎧⎨
⎩

(n + �)(n + � + 2) + 1 − 2mV0
β2h̄2

2(n + 1 + �)

⎫⎬
⎭

2

. (18)

and the normalization constant of the corresponding wave functions from Eq. (A8)

N =
{

�(2 + 4A(2)
2 + k + �)

g(A1, A(2)
2 , k)g(A1, A(2)

2 , �)(1 + 2A(2)
2 + k + �)�(1 − 2A1 + 4A(2)

2 )

}1/2

(19)

where A(2)
2 = 1 + �. Choosing the parameters as β = 1

a and V0 = α gives the
following expression (m = h̄ = 1)

En� = − 1

2a2

{
(n + �)(n + � + 2) + 1 − 2αa2

2(n + 1 + �)

}2

. (20)

which is the same result given in Ref. [20]. The standard Hulthén potential in Eq. (16)
could gives the Coulomb potential for βr � 1

V (r) = − Ze2

r
, (21)

where we set V0 = Ze2β. We obtain the energy spectrum of the Coulomb potential
from Eq. (18) (m = h̄ = e = 1)

En� = − Z2

2(n + 1 + �)2 . (22)

which is the same result obtained in Ref. [19]. The normalization constant of the
corresponding wave functions is given with the help of Eq. (19) under the above
assumptions.

The numerical energy values of the Hulthén potential obtained from Eq. (18) are
placed in second part of Table 3 for different quantum number pair (n, �) in atomic
units. We choose the parameters as V0 = β = δ as in Ref [21].
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2.3 Generalized Morse potential

We obtain the generalized Morse potential for the limit q → 0 in Eq. (1)

V (r) = V1e−2βr − V0e−βr , (23)

which gives the following equation for s-waves

(
d2

dr2 + 2mV1

h̄2 e−βr − 2mV0

h̄2 e−2βr + 2m En�

h̄2

)
R(r) = 0, (24)

Defining a new variable z = e−βr and taking the wave function of the form R(z) =
e−B1z/2zB2/2φ(z) we obtain

z
d2φ(z)

dz2 +
(

1 + B2

2
− B1z

)
dφ(z)

dz
+

{
− B1 B2

2
− B1

2
+ 2mV1

β2h̄2

}
φ(z) = 0, (25)

where B2
1 = 8mV0

β2h̄2 and B2
2 = 8m E

β2h̄2 . Using a new variable y = B1z gives

y
d2φ(y)

dy2 +
(

1 + B2

2
− y

)
dφ(z)

dz
+

{
− B2

2
− 1

2
+ 2mV1

B1β2h̄2

}
φ(y) = 0, (26)

which is the Laguerre differential equation

xy′′ + (α + 1 − y)y′ + ny = 0. (27)

where the factor n should be zero or a positive integer to get a polynomial solution
[22]. So, the solution of Eq. (25) are given in terms of the Laguerre polynomials as

φ(y) ∼ Lσ
n (y), (28)

where σ = B2/2 and n = − B2
2 − 1

2 + 2mV1
B1β2h̄2 . We get the total eigenfunctions of the

Morse potential

R(z) = Ne−B1z/2zB2/2 Lσ
n (B1z). (29)

and the energy eigenvalues

En� = −β2h̄2

8m

{
2n + 1 − V1

βh̄

√
2m

V0

}2

. (30)

We present the numerical energy values of the Morse potential obtained from the above
equation in Table 3. We give the results for H2 molecule (in eV) by taking the same
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parameter values to obtain the results given in Table 1 and by setting the potential
parameters as V0 = 2D0, V1 = D0.

Using the following representation of the Laguerre polynomials [22]

Lσ
n (x) =

n∑
k=0

(−1)k
(

n + σ

n − k

)
xk

k! , (31)

the normalization condition is written as

|N |2 g(n)g(m)

1∫
0

eB1z zB2+2kdz = 1, (32)

where

g(n) =
n∑

k=0

(−1)k
(

n + B2
2

n − k

)
Bk

1

k! ; g(m) =
n∑

k=0

(−1)k
(

m + B2
2

m − k

)
Bk

1

k! . (33)

Changing the variable t = B1z in Eq. (32) gives

|N |2 g(n)g(m)B−(1+B2+2k)
1

1∫
0

e−t t B2+2kdt = 1, (34)

which includes the incomplete Gamma function defined as [21]

γ (a, x) ≡
x∫

0

ta−1e−t dt = 1

a
xae−x

1 F1(1; 1 + a; x), (35)

Finally the normalization constant is obtained as

N =
{

e
B

1

g(n)g(m) 1 F1(1; 1 + 
; 1)

}1/2

, 
 = 1 + B2 + 2k. (36)

3 Conclusion

We have studied the approximate bound state solutions of the radial SE equation for
a two-term potential. We have obtained the energy eigenvalues and the corresponding
normalized wave functions approximately in terms of the hypergeometric functions.
We have presented our numerical results of the energy eigenvalues of two diatomic
molecules in Tables 1 and 2. We have also studied the analytical bound state solutions
of the Manning–Rosen potential, the ‘standard’ Hulthén potential and the generalized
Morse potential as special cases. We have observed that our all analytical results are
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the same with the ones obtained in the literature. We have also summarized some
numerical results of the energy eigenvalues of the above three potentials in Table 3
and observed that our results are good agreement with the ones obtained before.

Acknowledgments This research was partially supported by the Scientific and Technical Research Coun-
cil of Turkey.

Appendix A: Normalization constant

The wave functions in Eq. (13) is

R(z) = N z A1(1 − z)A2
2 F1(−n, n + 2A1 + 2A2; 1 + 2A1; z), (A1)

which is written in terms of the new variable z = qξ (0 ≤ ξ ≤ 1)

R(qξ) = Nq A1ξ A1(1 − qξ)A2
2 F1(−n, n + 2A1 + 2A2; 1 + 2A1; qξ), (A2)

The normalization condition
∫ 1

0 |R(qξ)|2 dξ = 1 gives

|N |2 q1+2A1

1∫
0

ξ2A1(1 − qξ)2A2 [ 2 F1(−n, n + 2A1 + 2A2; 1 + 2A1; qξ)]2 dx=1.

(A3)

Using the representation of the hypergeometric functions [22]

2 F1(−n, b; c; z) =
n∑

k=0

(−n)k(b)k

(c)kk! zk, (A4)

Equation (A3) becomes

|N |2 q1+2A1 g(A1, A2, k)g(A1, A2, l)

1∫
0

ξ2A1+k+l(1 − qξ)2A2 dξ = 1, (A5)

where (−n)k = (−1)k(n − k + 1)k = (−1)k �(n+1)
�(n−k+1)

and

g(A1, A2, k) =
n∑

k=0

(−n)k(n + 2A1 + 2A2)k

(1 + 2A1)kk! zk . (A6)

and g(A1, A2, l) = g(A1, A2, k → l).
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Using the following identity for the hypergeometric functions [22]

2 F1(α
′, β ′; δ′; z) = �(δ′)

�(β ′)�(δ′ − β ′)

1∫
0

tβ
′−1(1 − t)δ

′−β ′−1(1 − t z)−α′
dt, (A7)

we obtain the normalization constant from Eq. (A5)

N =
{

1

q1+2A1 g(A1, A2, k)g(A1, A2, l) 2 F1(−2A2, 1 + 2A1 + k + l; 2 + 2A2 + k + l; q)

}1/2

.

(A8)
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